
Using R at CHPC
Brett Milash

Center for High Performance Computing
10/23/2024

Today’s agenda:

• Choosing the best way to connect to CHPC for your R application
• Installing R packages
• Running parallel R packages at CHPC

Methods of using R at CHPC

Command Attributes

R Interactive, command line style

RStudio Interactive, either web browser or X-Windows GUI

Jupyter Lab or Notebook Interactive, document based, web browser GUI

Rscript Non-interactive, batch script oriented

R Markdown Non-interactive, document based

Methods to access resources at CHPC

Method Attributes Resource

ssh to interactive node command line or GUI interactive node

FastX to interactive node command line or GUI, persistence interactive node

OnDemand cluster shell access like ssh, command line only, no graphics interactive node

SLURM sbatch command (from
an interactive node)

non-interactive (batch mode) compute node(s)

SLURM salloc command (from
an interactive node)

interactive command-line or GUI compute node(s)

OnDemand applications
(RStudio or Jupyter)

web-based access compute node(s)

Remember the appropriate uses for interactive and compute nodes:
• Interactive nodes: writing code, installing code, small-scale testing, debugging, managing SLURM jobs
• Compute nodes: heavy-duty computing (simulations, stats, data visualization) whether interactive or not

R use methods vs. CHPC access methods
R RStudio Jupyter RScript R Markdown

ssh (to interactive node)

FastX (to interactive node)

OnDemand cluster shell access (runs
on interactive node)

SLURM sbatch (compute node)

SLURM salloc (compute node)

OnDemand system installed
applications (runs on compute nodes)

R use methods vs. CHPC access methods
R RStudio Jupyter RScript R Markdown

ssh (to interactive node) ✅ good
for testing

✅ but slow Inefficient - not
recommended

✅ good for
testing

✅ good for
testing

FastX (to interactive node) ✅ good
for testing

✅ good for
testing

Inefficient - not
recommended

✅ good for
testing

✅ good for
testing

OnDemand cluster shell access (on
interactive node)

✅ but no
graphics

❌ - requires X
windows

❌ - requires X
windows

✅ good for
testing

✅ good for
testing

SLURM sbatch (compute node) ❌ ❌ ❌ ⭐⭐⭐⭐⭐ ⭐⭐⭐

SLURM salloc (compute node) ✅ ✅ Inefficient - not
recommended

✅ ✅

OnDemand system installed
applications (on compute nodes)

❌ ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐⭐ ❌ ❌

“✅ good for testing” means software works well within computing limits of interactive node

ssh, FastX, and OnDemand shell access

• These methods provide a terminal window on an interactive node
• Graphics (whether GUI or graphical output) requires X-forwarding

• On Mac use “ssh -Y username@hostname”
• On Windows use Xming (https://xming.en.softonic.com/)
• X-forwarding can be slow without some help

• FastX accelerates X-forwarding
• Web interface and desktop clients are available
• Graphics performance much improved over ssh X-forwarding
• Keyboard copy and paste can be a problem

https://xming.en.softonic.com/

SLURM sbatch and salloc demo

• Both methods provide access to compute nodes
• sbatch is batch oriented - therefore non-interactive

• Submits a shell script to cluster for non-interactive execution

• salloc starts an interactive shell session on a compute node
• Session started by salloc inherits your environment from interactive node

OnDemand demo

• Web portal
• Access to compute nodes (and interactive nodes)
• Great for running web and GUI applications on compute nodes
• Access to compute nodes via Slurm system

Writing R code for interactive vs batch jobs

• Some tasks are inherently interactive
• Coding
• Debugging
• Data visualization

• Some tasks are inherently batch oriented
• Large or long-running simulations
• Processing lots of data files

• To write R code that adapts to both use cases:
• Write lots of functions (potentially in a separate source code file)
• Use interactive()to test whether job is interactive or batch

$ module load R
$ R

R version 4.4.0 (2024-04-24) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

…

> library(solaR)
Error in library(solaR) : there is no package called ‘solaR’

solaR: Radiation and Photovoltaic Systems
Calculation methods of solar radiation and performance of photovoltaic systems from daily and intradaily
irradiation data sources.

https://cran.r-project.org/web/packages/solaR/index.html

https://cran.r-project.org/web/packages/solaR/index.html

Strategies for handling missing R libraries

1. Tell R where to find the already-installed package
2. Find a version of R that has the package installed
3. Install the package yourself

Strategy 1: Tell R where to find the already-installed package

• When loading a library R searches the path returned by .libPaths()

• One can append additional existing directories to this path:

• However - this doesn’t persist from session to session

> .libPaths()
[1] "/uufs/chpc.utah.edu/sys/installdir/r8/RLibs/4.4.0"
[2] "/uufs/chpc.utah.edu/sys/installdir/r8/R/4.4.0/lib64/R/library"

> .libPaths(c(.libPaths(), "~u0253283/R/x86_64-pc-linux-gnu-library/4.4"))
> .libPaths()
[1] "/uufs/chpc.utah.edu/sys/installdir/r8/RLibs/4.4.0"
[2] "/uufs/chpc.utah.edu/sys/installdir/r8/R/4.4.0/lib64/R/library"
[3] "/uufs/chpc.utah.edu/common/home/u0253283/R/x86_64-pc-linux-gnu-library/4.4"

Strategy 1 (continued)
• Or use the R_LIBS_USER environment variable:

• This strategy works great for research labs with group space (i.e. a
shared file system) that want a shared R library collection

In bash:
$ export R_LIBS_USER=~u0253283/R/x86_64-pc-linux-gnu-library/4.4
Or in tcsh:
$ setenv R_LIBS_USER ~u0253283/R/x86_64-pc-linux-gnu-library/4.4
$ R

R version 4.4.0 (2024-04-24) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

> .libPaths()
[1] "/uufs/chpc.utah.edu/common/home/u0253283/R/x86_64-pc-linux-gnu-library/4.4"
[2] "/uufs/chpc.utah.edu/sys/installdir/r8/RLibs/4.4.0"
[3] "/uufs/chpc.utah.edu/sys/installdir/r8/R/4.4.0/lib64/R/library"

Strategy 2: Find a version of R that has the package installed

Partial list of R modules at CHPC:
• R/4.2.1-bioconductor
• R/4.2.2
• R/4.3.2-basic
• R/4.3.2-bioconductor
• R/4.3.2-geospatial
• R/4.3.2
• R/4.4.0-basic
• R/4.4.0-bioconductor
• R/4.4.0-geospatial
• R/4.4.0

“The best R package installation is the one you don’t have to do.”
-- Brett Milash

CHPC’s R modules
• Every CHPC R module has useful libraries in addition to the base package:

• Certain CHPC R modules have additional library collections:
• Bioconductor (https://www.bioconductor.org/)
• Geospatial packages (e.g. proj4, rgdal, RNetCDF, hdf5r)

car ggvis maptools reshape2 testthat
caret glmnet mgcv rgl threeJS
data.table googleVis microbenchmark rmarkdown tidyr
devtools htmlwidgets multcomp RMySQL vcd
DiagrammeR httr network3D RODBC XLConnect
dplyr jsonlite nlme roxygen2 xlsx
DT knitr parallel RPostgresSQL XML
dygraphs leaflet pryr RSQLite xtable
foreign lme4 qcc shiny xts
gcbd locfit quantmod sp zoo
ggmap lubridate randomForest stringr
ggplot2 maps Rcpp survival

https://www.bioconductor.org/

Strategy 3: Install the package yourself

Main repositories of R code:
• CRAN: Comprehensive R Archive Network

• https://cran.r-project.org
• https://cran.r-project.org/web/packages/available_packages_by_name.html

• Bioconductor: Open-source software for bioinformatics
• https://www.bioconductor.org
• https://bioconductor.org/packages/release/bioc/

• Github
• https://github.com
• https://github.com/qinwf/awesome-R

Installation method varies depending on repository

https://cran.r-project.org/
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://www.bioconductor.org/
https://bioconductor.org/packages/release/bioc/
https://github.com/
https://github.com/qinwf/awesome-R

Installing packages from CRAN

Use the install.packages() function, with package name in quotes:
$ module load R/4.2.2
$ R

R version 4.2.2 (2022-10-31) -- "Innocent and Trusting”
…
> .libPaths()
[1] "/uufs/chpc.utah.edu/sys/installdir/r8/R/4.2.2/lib64/R/library"
[2] "/uufs/chpc.utah.edu/sys/installdir/r8/RLibs/4.2.2”
> install.packages("solaR")
Installing package into
‘/uufs/chpc.utah.edu/sys/installdir/r8/R/4.2.2/lib64/R/library’
(as ‘lib’ is unspecified)
Warning in install.packages("solaR") :
 'lib = "/uufs/chpc.utah.edu/sys/installdir/r8/R/4.2.2/lib64/R/library"' is not
writable
Would you like to use a personal library instead? (yes/No/cancel) yes

Installing packages from CRAN (continued)

Would you like to create a personal library
‘/uufs/chpc.utah.edu/common/home/u0424091/R/x86_64-pc-linux-gnu-library/4.2’
to install packages into? (yes/No/cancel) yes
--- Please select a CRAN mirror for use in this session ---
(A list of CRAN mirror sites pops up - I selected “USA (IA)(https)”)
also installing the dependencies ‘interp’, ‘latticeExtra’

trying URL 'https://mirror.las.iastate.edu/CRAN/src/contrib/interp_1.1-4.tar.gz’
…
* DONE (solaR)

The downloaded source packages are in
‘/tmp/RtmpdZF0ge/downloaded_packages’
>

Installing packages from CRAN (continued)
> library(solaR)
Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

 as.Date, as.Date.numeric

Loading required package: lattice
Loading required package: latticeExtra
Time Zone set to UTC.
> find.package("solaR")
[1] "/uufs/chpc.utah.edu/common/home/u0424091/R/x86_64-pc-linux-gnu-
library/4.2/solaR"
> .libPaths()
[1] "/uufs/chpc.utah.edu/common/home/u0424091/R/x86_64-pc-linux-gnu-library/4.2"
[2] "/uufs/chpc.utah.edu/sys/installdir/r8/R/4.2.2/lib64/R/library"
[3] "/uufs/chpc.utah.edu/sys/installdir/r8/RLibs/4.2.2"

Installing packages from Github
DataExplorer: https://github.com/boxuancui/DataExplorer
Use the devtools::install_github() function, with package name in quotes.
Note that “lib=“ is specified! Without that the installation of dependencies will fail.

$ module load R/4.2.2
$ R

R version 4.4.0 (2024-04-24) -- "Puppy Cup”
…
> devtools::install_github("boxuancui/DataExplorer",
lib=c("/uufs/chpc.utah.edu/common/home/u0424091/R/x86_64-pc-linux-gnu-
library/4.4"))
Downloading GitHub repo boxuancui/DataExplorer@HEAD
…
** testing if installed package keeps a record of temporary installation path
* DONE (DataExplorer)
> library(DataExplorer)

https://github.com/boxuancui/DataExplorer

Installing packages from Bioconductor
> install.packages("BiocManager")
Installing package into
‘/uufs/chpc.utah.edu/sys/installdir/r8/R/4.2.2/lib64/R/library’
(as ‘lib’ is unspecified)
Warning in install.packages("BiocManager") :
 'lib = "/uufs/chpc.utah.edu/sys/installdir/r8/R/4.2.2/lib64/R/library"' is not
writable
Would you like to use a personal library instead? (yes/No/cancel) yes

…

** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BiocManager)

The downloaded source packages are in
‘/tmp/RtmpzCb3wb/downloaded_packages’
>

Installing packages from Bioconductor (continued)

> BiocManager::install("PFAM.db",
lib=c("/uufs/chpc.utah.edu/common/home/u0424091/R/x86_64-pc-linux-gnu-
library/4.4"))

…
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (PFAM.db)

The downloaded source packages are in
‘/tmp/RtmpzCb3wb/downloaded_packages’
>

Like devtools::install_github(), it is safest to specify the ”lib=“ argument.

Installing packages from source code

• install.packages, BiocManager::install, and devtools::install_github
download the package source code, then compile and install it
• If you have the source code URL you can compile and install it like

this:

• This method doesn’t handle dependencies however

$ wget https://bioconductor.org/packages/3.16/bioc/src/contrib/limma_3.54.2.tar.gz
$ R CMD INSTALL --library=$HOME/R/x86_64-pc-linux-gnu-library/4.2 limma_3.54.2.tar.gz

anyLib: Install and Load Any Package from CRAN,
Bioconductor or Github

• “Made to make your life simpler with packages, by installing and
loading a list of packages, whether they are on CRAN, Bioconductor or
github. For github, if you do not have the full path, with the
maintainer name in it (e.g. "achateigner/topReviGO"), it will be able
to load it but not to install it.”

• https://cran.r-project.org/web/packages/anyLib/index.html

https://cran.r-project.org/web/packages/anyLib/index.html

Running parallel R code at CHPC
• On an interactive node - should not be using multiple cores
• A SLURM job may not have access to all the cores on a node
• To count all the cores on the machine (which is not what we want):

• To count the cores available to your job:

How many cores are on this machine?
> library(parallel)
> detectCores()
[1] 64

How many cores are available to me on this node?
> strtoi(Sys.getenv("SLURM_TASKS_PER_NODE"))
[1] 10
How many cores are available to my potentially multi-node job:
> strtoi(Sys.getenv("SLURM_NTASKS"))
[1] 10

CHPC’s R documentation

• https://git.io/CHPC-Intro-to-Parallel-Computing-R
• Excellent examples of parallel R code, both single- and multi-node

• https://www.chpc.utah.edu/documentation/software/r-language.php
• A few things are out of date:

• Setting up a personal library: as we saw, R version 4.X handles (most) of this
automatically

• We no longer use Intel’s compiler icc for R, we use gcc exclusively
• Older versions of R used the file $HOME/.R/Makevars to specify compile-time options,

and this file is largely obsolete (thank goodness!)

https://git.io/CHPC-Intro-to-Parallel-Computing-R
https://www.chpc.utah.edu/documentation/software/r-language.php

