Skip to contents

All functions

SensIAT_example_data SensIAT_example_fulldata
SensIAT Example Data
SensIAT_fit_marginal_model()
Title
SensIAT_jackknife() SensIAT_jackknife_fulldata()
Estimate response with jackknife resampling
SensIAT_prepare_data()
Prepare data for SensIAT analysis
SensIAT_sim_outcome_modeler() SensIAT_sim_outcome_modeler_fbw()
Outcome Modeler for SensIAT Single Index Model.
SensIAT_sim_outcome_modeler_mave()
Single Index Model using MAVE and Optimizing Bandwidth.
add_class()
Adds an S3 class to an object
add_terminal_observations()
Add Terminal Observations to a Dataset
autoplot(<SensIAT_fulldata_jackknife_results>)
Plot for estimated treatment effect for SensIAT_fulldata_jackknife_results objects
autoplot(<SensIAT_fulldata_model>)
Plot for estimated treatment effect for SensIAT_fulldata_model objects
autoplot(<SensIAT_within_group_model>)
Plot a SensIAT_within_group_model object
autoplot(<SensIAT_withingroup_jackknife_results>)
Plot estimates at given times for SensIAT_withingroup_jackknife_results objects
compute_influence_terms()
Compute Influence Terms
fit_SensIAT_fulldata_model() fit_SensIAT_within_group_model()
Produce fitted model for group (treatment or control)
jackknife()
Perform Jackknife resampling on an object.
pcoriaccel_estimate_pmf()
Directly estimate the probability mass function of Y.
pcoriaccel_evaluate_basis()
Compiled version of evaluate_basis() function
pcoriaccel_evaluate_basis_mat()
Compiled version of evaluate_basis() function (matrix version)
predict(<SensIAT_fulldata_model>) predict(<SensIAT_within_group_model>)
Predict mean and variance of the outcome for a SensIAT within-group model
sensitivity_expected_values()
Compute Conditional Expected Values based on Outcome Model