Package index
-
SensIAT_example_data
SensIAT_example_fulldata
- SensIAT Example Data
-
SensIAT_jackknife()
SensIAT_jackknife_fulldata()
- Estimate response with jackknife resampling
-
SensIAT_prepare_data()
- Prepare data for SensIAT analysis
-
SensIAT_sim_outcome_modeler()
SensIAT_sim_outcome_modeler_fbw()
- Outcome Modeler for
SensIAT
Single Index Model.
-
SensIAT_sim_outcome_modeler_mave()
- Single Index Model using MAVE and Optimizing Bandwidth.
-
add_class()
- Adds an S3 class to an object
-
add_terminal_observations()
- Add Terminal Observations to a Dataset
-
autoplot(<SensIAT_fulldata_jackknife_results>)
- Plot for estimated treatment effect for
SensIAT_fulldata_jackknife_results
objects
-
autoplot(<SensIAT_fulldata_model>)
- Plot for estimated treatment effect for
SensIAT_fulldata_model
objects
-
autoplot(<SensIAT_within_group_model>)
- Plot a
SensIAT_within_group_model
object
-
autoplot(<SensIAT_withingroup_jackknife_results>)
- Plot estimates at given times for
SensIAT_withingroup_jackknife_results
objects
-
compute_influence_terms()
- Compute Influence Terms
-
fit_SensIAT_fulldata_model()
fit_SensIAT_within_group_model()
- Produce fitted model for group (treatment or control)
-
jackknife()
- Perform Jackknife resampling on an object.
-
pcoriaccel_estimate_pmf()
- Directly estimate the probability mass function of Y.
-
pcoriaccel_evaluate_basis()
- Compiled version of
evaluate_basis()
function
-
pcoriaccel_evaluate_basis_mat()
- Compiled version of
evaluate_basis()
function (matrix version)
-
predict(<SensIAT_fulldata_model>)
predict(<SensIAT_within_group_model>)
- Predict mean and variance of the outcome for a
SensIAT
within-group model
-
sensitivity_expected_values()
- Compute Conditional Expected Values based on Outcome Model