Package index
-
SensIAT_example_dataSensIAT_example_fulldata - SensIAT Example Data
-
add_terminal_observations() - Add Terminal Observations to a Dataset
-
autoplot(<SensIAT_fulldata_jackknife_results>) - Plot for Estimated Treatment Effect for
SensIAT_fulldata_jackknife_resultsObjects
-
autoplot(<SensIAT_fulldata_model>) - Plot for Estimated Treatment Effect for
SensIAT_fulldata_modelObjects
-
autoplot(<SensIAT_within_group_model>) - Plot a
SensIAT_within_group_modelObject
-
autoplot(<SensIAT_withingroup_jackknife_results>) - Plot Estimates at Given Times for
SensIAT_withingroup_jackknife_resultsObjects
-
compute_SensIAT_expected_values() - Compute Conditional Expected Values based on Outcome Model
-
compute_influence_terms() - Compute Influence Terms
-
fit_SensIAT_marginal_mean_model() - Fit the Marginal Means Model
-
fit_SensIAT_single_index_fixed_coef_model()fit_SensIAT_single_index_fixed_bandwidth_model() - Outcome Modeler for
SensIATSingle Index Model.
-
fit_SensIAT_single_index_norm1coef_model() - Single Index Model using MAVE and Optimizing Bandwidth.
-
fit_SensIAT_fulldata_model()fit_SensIAT_within_group_model() - Produce fitted model for group (treatment or control)
-
jackknife() - Perform Jackknife Resampling on an Object
-
predict(<SensIAT_fulldata_model>)predict(<SensIAT_within_group_model>) - Give the Marginal Mean Estimate and its Estimated Asymptotic Variance
-
prepare_SensIAT_data() - Prepare Data for Sensitivity Analysis with Irregular Assessment Times