Skip to contents

All functions

SensIAT_example_data SensIAT_example_fulldata
SensIAT Example Data
add_terminal_observations()
Add Terminal Observations to a Dataset
autoplot(<SensIAT_fulldata_jackknife_results>)
Plot for Estimated Treatment Effect for SensIAT_fulldata_jackknife_results Objects
autoplot(<SensIAT_fulldata_model>)
Plot for Estimated Treatment Effect for SensIAT_fulldata_model Objects
autoplot(<SensIAT_within_group_model>)
Plot a SensIAT_within_group_model Object
autoplot(<SensIAT_withingroup_jackknife_results>)
Plot Estimates at Given Times for SensIAT_withingroup_jackknife_results Objects
compute_SensIAT_expected_values()
Compute Conditional Expected Values based on Outcome Model
compute_influence_terms()
Compute Influence Terms
fit_SensIAT_marginal_mean_model()
Fit the Marginal Means Model
fit_SensIAT_single_index_fixed_coef_model() fit_SensIAT_single_index_fixed_bandwidth_model()
Outcome Modeler for SensIAT Single Index Model.
fit_SensIAT_single_index_norm1coef_model()
Single Index Model using MAVE and Optimizing Bandwidth.
fit_SensIAT_fulldata_model() fit_SensIAT_within_group_model()
Produce fitted model for group (treatment or control)
jackknife()
Perform Jackknife Resampling on an Object
predict(<SensIAT_fulldata_model>) predict(<SensIAT_within_group_model>)
Give the Marginal Mean Estimate and its Estimated Asymptotic Variance
prepare_SensIAT_data()
Prepare Data for Sensitivity Analysis with Irregular Assessment Times