epiworldpy.ModelDiffNet

epiworldpy.ModelDiffNet#

class epiworldpy.ModelDiffNet(self: epiworldpy._core.ModelDiffNet, name: str, prevalence: float, prob_adopt: float, normalize_exposure: bool, data: float, data_ncols: int, data_cols: std::vector<unsigned long, std::allocator<unsigned long> >, params: std::vector<double, std::allocator<double> >)#

A network diffusion model.

Create a new DiffNet model.

__init__(self: epiworldpy._core.ModelDiffNet, name: str, prevalence: float, prob_adopt: float, normalize_exposure: bool, data: float, data_ncols: int, data_cols: std::vector<unsigned long, std::allocator<unsigned long> >, params: std::vector<double, std::allocator<double> >) None#

Create a new DiffNet model.

Methods

__init__(self, name, prevalence, prob_adopt, ...)

Create a new DiffNet model.

add_entity(self, arg0)

add_state(self, lab, fun)

add_tool(self, tool)

Adds a tool to modify the model.

add_virus(self, virus)

Adds a virus to the model

agents_from_edgelist(self, source, target, ...)

Populatates the model's agents from an edge list.

agents_smallworld(self, n, k, d, p)

Populate the model without an edgelist.

get_db(self)

Get the data from the model run, which may then be queried with associated methods.

get_entity(self, arg0, arg1)

get_name(self)

Get the name of the type of model.

get_states(self)

print(self[, summary])

Print a summary of the model run.

run(self, ndays[, seed])

Run the model according to the previously specific parameters.