Skip to contents

Introduction

In this framework let A=aA=a denote the treatment arm, YY the outcome variable, and tt the time variable. The SensIAT package allows users to specify different loss functions and link functions when fitting models to their data. This flexibility enables users to tailor the modeling approach to their specific research questions and data characteristics. Let μa(t)=E{Y(t)A=a}\mu_a(t) = E\{Y(t)\mid A=a\} denote the population mean outcome at time tt were all participants assigned to treatment arm A=aA=a. The mean function is modeled as $_a(t) = g{-1}((t)_a) = s((t)^_a) $ where gg is a link function, 𝐁\mathbf{B} is a vector values basis function and γa\gamma_a is a vector of coefficients, distinct for each treatment arm. The function s=g1s = g^{-1} is the inverse link function. We consider three loss functions to use in order to fit the coefficient γa\gamma_a:

  • 1(𝛄)=t=t1t2[g{μ(t)}𝐁(t)𝛄]2dt\mathcal{L}_1(\boldsymbol{\gamma}) = \int_{t=t_1}^{t_2} \left[ g\left\{\mu(t)\right\} - \boldsymbol{B}(t)^\prime \boldsymbol{\gamma}\right]^2 dt, squared error loss in the transformed space;
  • 2(𝛄)=t=t1t2[μ(t)s{𝐁(t)𝛄}]2dt\mathcal{L}_2(\boldsymbol{\gamma}) = \int_{t=t_1}^{t_2} \left[ \mu(t) - s\left\{\boldsymbol{B}(t)^\prime \boldsymbol{\gamma}\right\}\right]^2 dt, squared error loss in the original space;
  • 3(𝛄)=t=t1t2[b{𝐁(t)𝛄}μ(t)𝐁(t)𝛄]dt\mathcal{L}_3(\boldsymbol{\gamma}) = \int_{t=t_1}^{t_2} \left[ b\{\boldsymbol{B}(t)^\prime \boldsymbol{\gamma}\} - \mu(t)\boldsymbol{B}(t)^\prime \boldsymbol{\gamma}\right] dt, quasi-likelihood loss, where s(z)=b(z)zs(z) = \frac{\partial b(z)}{\partial z }. In the SensIAT package, we have implemented the following link functions:
  • Identity link: g(μ)=μg(\mu) = \mu, s(z)=zs(z) = z,
  • Log link: g(μ)=log(μ)g(\mu) = \log(\mu), s(z)=exp(z)s(z) = \exp(z),
  • Logit link: g(μ)=log(μ1μ)g(\mu) = \log\left(\frac{\mu}{1-\mu}\right), s(z)=exp(z)1+exp(z)s(z) = \frac{\exp(z)}{1+\exp(z)}.

Details

The estimate for the treatment group marginal mean function, μ̂,g(t)=g1{𝐁(t)𝛃̂}\widehat\mu_{\mathcal{L}, g}(t) = g^{-1}\big\{\boldsymbol{B}(t)^\prime \widehat{\boldsymbol{\beta}}\big\} is found by solving 1ni=1n𝚿̂,g(𝐎i;𝛃)=0\frac{1}{n}\sum_{i=1}^n \widehat{\boldsymbol{\Psi}}_{\mathcal{L},g}(\boldsymbol{O}_i;\boldsymbol{\beta}) = 0, for β\beta, where

𝚿̂j(𝐎i;𝛃)=k=1Ki{W,g(Tik;𝛃)[Yi(Tik)𝔼̂{Y(Tik)𝐎¯i(Tik)}]ρ̂{Tik𝐎¯i(Tik),Yi(Tik)}}+t=t1t2W,g(t𝛃)[𝔼̂{Y(t)𝐎¯i(t)}s{𝐁(t)𝛃}]dt \widehat{\boldsymbol{\Psi}}_j(\boldsymbol{O}_i;\boldsymbol{\beta}) = \sum_{k=1}^{K_i} \Bigg\{ W_{\mathcal{L}, g}(T_{ik};\boldsymbol{\beta})\frac{\big[Y_i(T_{ik}) - \widehat{\mathbb{E}} \big\{Y(T_{ik}) \mid \overline{\boldsymbol{O}}_i(T_{ik}) \big\} \big] }{\widehat{\rho} \big \{T_{ik} \mid \overline{\boldsymbol{O}}_i(T_{ik}), Y_i(T_{ik}) \big\}} \Bigg\} + \int_{t=t_1}^{t_2} W_{\mathcal{L}, g}(t\mid\boldsymbol{\beta}) \left[ \widehat{\mathbb{E}} \left\{ Y(t)\mid \overline{\boldsymbol{O}}_i(t) \right\} - s\left\{ \boldsymbol{B}(t)^\prime \boldsymbol{\beta} \right\} \right]dt The W,g(t;𝛃)W_{\mathcal{L}, g}(t;\boldsymbol{\beta}) term depends on the choice of loss function and link function.

Squared Error Loss in the Transformed Space

For squared error loss in the transformed space, 1\mathcal{L}_1, in general we have W,g(t;𝛃)=W1(t;𝛃)=𝐕11𝐁(t)g(z)z|z=s{𝐁(t)𝛃},𝐕1=t=t1t2𝐁(t)𝐁(t)dt W_{\mathcal{L},g}(t;\boldsymbol{\beta}) = W_1(t;\boldsymbol{\beta}) = \boldsymbol{V}_1^{-1}\boldsymbol{B}(t)\left.\frac{\partial g(z)}{\partial z} \right|_{z = s\left\{\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right\}} , \quad \boldsymbol{V}_1 = \int_{t=t_1}^{t_2} \boldsymbol{B}(t) \boldsymbol{B}(t)^\prime dt

For the identity link, g(μ)=μg(\mu) = \mu, g(z)z1\frac{\partial g(z)}{\partial z}\equiv 1, so W1(t;𝛃)=𝐕11𝐁(t). W_1(t;\boldsymbol{\beta}) = \boldsymbol{V}_1^{-1}\boldsymbol{B}(t).

For the log link, g(μ)=log(μ), g(\mu) = \log(\mu),

g(z)z=1z,\frac{\partial g(z)}{\partial z} = \frac{1}{z},W1(t;𝛃)=𝐕11𝐁(t){𝐁(t)𝛃}1. W_1(t;\boldsymbol{\beta}) = \boldsymbol{V}_1^{-1}\boldsymbol{B}(t) \left\{\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right\}^{-1}.

For the logit link, g(μ)=log(μ1μ), g(\mu) = \log\left(\frac{\mu}{1-\mu}\right), g(z)z=1z(1z),\frac{\partial g(z)}{\partial z} = \frac{1}{z(1-z)}, W1(t;𝛃)=𝐕11𝐁(t){𝐁(t)𝛃(1𝐁(t)𝛃)}1. W_1(t;\boldsymbol{\beta}) = \boldsymbol{V}_1^{-1}\boldsymbol{B}(t) \left\{\boldsymbol{B}(t)^\prime \boldsymbol{\beta} \left(1-\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right)\right\}^{-1}.

Squared error loss in the original space

For squared error loss in the original space, 2\mathcal{L}_2, in general we have W2,g(t;𝛃)=W2(t;𝛃)=𝐕2(𝛃)1s(𝐁(t)𝛃)𝛃,𝐕2(𝛃)=t=t1t2s(𝐁(t)𝛃)𝛃s(𝐁(t)𝛃)𝛃dt W_{\mathcal{L}_2,g}(t;\boldsymbol{\beta}) = W_2(t;\boldsymbol{\beta}) = \boldsymbol{V}_2(\boldsymbol{\beta})^{-1} \frac{\partial s(\boldsymbol{B}(t)^\prime \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} , \quad \boldsymbol{V}_2(\boldsymbol{\beta}) = \int_{t=t_1}^{t_2} \frac{\partial s(\boldsymbol{B}(t)^\prime \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \frac{\partial s(\boldsymbol{B}(t)^\prime \boldsymbol{\beta})}{\partial \boldsymbol{\beta}^\prime} dt

For the identity link, s(z)=zs(z) = z, so s(𝐁(t)𝛃)=𝐁(t)𝛃, s(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}) = \boldsymbol{B}(t)^\prime \boldsymbol{\beta}, s(𝐁(t)𝛃)𝛃=𝐁(t), \frac{\partial s(\boldsymbol{B}(t)^\prime \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \boldsymbol{B}(t), and W2(t;𝛃)=𝐕21𝐁(t), W_2(t;\boldsymbol{\beta}) = \boldsymbol{V}_2^{-1}\boldsymbol{B}(t), where 𝐕2=t=t1t2𝐁(t)𝐁(t)dt. \boldsymbol{V}_2 = \int_{t=t_1}^{t_2} \boldsymbol{B}(t) \boldsymbol{B}(t)^\prime dt.

For the log link, s(z)=exp(z)s(z) = \exp(z), so s(𝐁(t)𝛃)=exp(𝐁(t)𝛃), s(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}) = \exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right), s(𝐁(t)𝛃)𝛃=𝐁(t)exp(𝐁(t)𝛃), \frac{\partial s(\boldsymbol{B}(t)^\prime \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \boldsymbol{B}(t) \exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right), and W2(t;𝛃)=𝐕2(𝛃)1𝐁(t)exp(𝐁(t)𝛃), W_2(t;\boldsymbol{\beta}) = \boldsymbol{V}_2(\boldsymbol{\beta})^{-1} \boldsymbol{B}(t) \exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right), where 𝐕2(𝛃)=t=t1t2𝐁(t)𝐁(t)exp(2𝐁(t)𝛃)dt. \boldsymbol{V}_2(\boldsymbol{\beta}) = \int_{t=t_1}^{t_2} \boldsymbol{B}(t) \boldsymbol{B}(t)^\prime \exp\left(2\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right) dt.

For the logit link, s(z)=exp(z)1+exp(z)s(z) = \frac{\exp(z)}{1+\exp(z)}, so s(𝐁(t)𝛃)=exp(𝐁(t)𝛃)1+exp(𝐁(t)𝛃), s(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}) = \frac{\exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right)}{1+\exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right)}, $$ \frac{\partial s(\boldsymbol{B}(t)^\prime \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \boldsymbol{B}(t) \frac{\exp\left(\boldsymbol{B}(t)^\prime \bold{\beta}\right)}{\left\{1+\exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right)\right\}^2}, $$ and $$ W_2(t;\boldsymbol{\beta}) = \boldsymbol{V}_2(\boldsymbol{\beta})^{-1} \boldsymbol{B}(t) \frac{\exp\left(\boldsymbol{B}(t)^\prime \bold{\beta}\right)}{\left\{1+\exp\left(\boldsymbol{B}(t)^\prime \bold{\beta}\right)\right\}^2}, $$ where 𝐕2(𝛃)=t=t1t2𝐁(t)𝐁(t)exp(2𝐁(t)𝛃){1+exp(𝐁(t)𝛃)}4dt. \boldsymbol{V}_2(\boldsymbol{\beta}) = \int_{t=t_1}^{t_2} \boldsymbol{B}(t) \boldsymbol{B}(t)^\prime \frac{\exp\left(2\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right)}{\left\{1+\exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right)\right\}^4} dt.

Quasi-likelihood Loss

For quasi-likelihood loss, 3\mathcal{L}_3, in general we have W3,g(t;𝛃)=W3(t;𝛃)=𝐕3(𝛃)1𝐁(t),𝐕3(𝛃)=t=t1t2𝐁(t)𝐁(t)s(z)z|z=𝐁(t)𝛃dt W_{\mathcal{L}_3,g}(t;\boldsymbol{\beta}) = W_3(t;\boldsymbol{\beta}) = \boldsymbol{V}_3(\boldsymbol{\beta})^{-1} \boldsymbol{B}(t) , \quad \boldsymbol{V}_3(\boldsymbol{\beta}) = \int_{t=t_1}^{t_2} \boldsymbol{B}(t) \boldsymbol{B}(t) ^ \prime \left. \frac{\partial s(z)}{\partial z} \right|_{z=\boldsymbol{B}(t)^\prime \boldsymbol{\beta}} dt

For the identity link, s(z)=zs(z) = z, so s(z)z1, \frac{\partial s(z)}{\partial z} \equiv 1, and W3(t;𝛃)=𝐕31𝐁(t), W_3(t;\boldsymbol{\beta}) = \boldsymbol{V}_3^{-1}\boldsymbol{B}(t), where 𝐕3=t=t1t2𝐁(t)𝐁(t)dt. \boldsymbol{V}_3 = \int_{t=t_1}^{t_2} \boldsymbol{B}(t) \boldsymbol{B}(t)^\prime dt.

For the log link, s(z)=exp(z)s(z) = \exp(z), so s(z)z=exp(z), \frac{\partial s(z)}{\partial z} = \exp(z), and W3(t;𝛃)=𝐕3(𝛃)1𝐁(t), W_3(t;\boldsymbol{\beta}) = \boldsymbol{V}_3(\boldsymbol{\beta})^{-1} \boldsymbol{B}(t), where 𝐕3(𝛃)=t=t1t2𝐁(t)𝐁(t)exp(𝐁(t)𝛃)dt. \boldsymbol{V}_3(\boldsymbol{\beta}) = \int_{t=t_1}^{t_2} \boldsymbol{B}(t) \boldsymbol{B}(t)^\prime \exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right) dt.

For the logit link, s(z)=exp(z)1+exp(z)s(z) = \frac{\exp(z)}{1+\exp(z)}, so s(z)z=exp(z){1+exp(z)}2, \frac{\partial s(z)}{\partial z} = \frac{\exp(z)}{\left\{1+\exp(z)\right\}^2}, and W3(t;𝛃)=𝐕3(𝛃)1𝐁(t), W_3(t;\boldsymbol{\beta}) = \boldsymbol{V}_3(\boldsymbol{\beta})^{-1} \boldsymbol{B}(t), where 𝐕3(𝛃)=t=t1t2𝐁(t)𝐁(t)exp(𝐁(t)𝛃){1+exp(𝐁(t)𝛃)}2dt. \boldsymbol{V}_3(\boldsymbol{\beta}) = \int_{t=t_1}^{t_2} \boldsymbol{B}(t) \boldsymbol{B}(t)^\prime \frac{\exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right)}{\left\{1+\exp\left(\boldsymbol{B}(t)^\prime \boldsymbol{\beta}\right)\right\}^2} dt.