Skip to contents

This function computes the influence terms for the marginal outcome model sensitivity analysis. It is a generic function that can handle different types of outcome models.

Usage

compute_influence_terms(outcome.model, intensity.model, alpha, data, ...)

# Default S3 method
compute_influence_terms(
  outcome.model,
  intensity.model,
  alpha,
  data,
  id,
  base,
  ...
)

# S3 method for class '`SensIAT::Single-index-outcome-model`'
compute_influence_terms(
  outcome.model,
  intensity.model,
  alpha,
  data,
  base,
  tolerance = .Machine$double.eps^(1/3),
  na.action = na.fail,
  id = NULL,
  time = NULL,
  ...
)

Arguments

outcome.model

The outcome model fitted to the data.

intensity.model

The intensity model fitted to the data.

alpha

A numeric vector representing the sensitivity parameter.

data

A data frame containing the observations.

...

Additional arguments passed to the method.

id

A variable representing the patient identifier.

base

A spline basis object.

tolerance

Numeric value indicating the tolerance for integration, default is .Machine$double.eps^(1/3).

na.action

Function to handle missing values, default is na.fail.

time

Variable indicating the time variable in the data, by Default will be extracted from the intensity model response.

Methods (by class)

  • compute_influence_terms(default): Generic method, which throws a not implemented error.

  • compute_influence_terms(`SensIAT::Single-index-outcome-model`): Optimized method for the single index model.