SURV model
Usage
ModelSURV(
  name,
  prevalence,
  efficacy_vax,
  latent_period,
  infect_period,
  prob_symptoms,
  prop_vaccinated,
  prop_vax_redux_transm,
  prop_vax_redux_infect,
  surveillance_prob,
  transmission_rate,
  prob_death,
  prob_noreinfect
)Arguments
- name
 String. Name of the virus.
- prevalence
 Initial number of individuals with the virus.
- efficacy_vax
 Double. Efficacy of the vaccine. (1 - P(acquire the disease)).
- latent_period
 Double. Shape parameter of a 'Gamma(latent_period, 1)' distribution. This coincides with the expected number of latent days.
- infect_period
 Double. Shape parameter of a 'Gamma(infected_period, 1)' distribution. This coincides with the expected number of infectious days.
- prob_symptoms
 Double. Probability of generating symptoms.
- prop_vaccinated
 Double. Probability of vaccination. Coincides with the initial prevalence of vaccinated individuals.
- prop_vax_redux_transm
 Double. Factor by which the vaccine reduces transmissibility.
- prop_vax_redux_infect
 Double. Factor by which the vaccine reduces the chances of becoming infected.
- surveillance_prob
 Double. Probability of testing an agent.
- transmission_rate
 Double. Raw transmission probability.
- prob_death
 Double. Raw probability of death for symptomatic individuals.
- prob_noreinfect
 Double. Probability of no re-infection.
Value
The
ModelSURVfunction returns a model of class epiworld_model.
See also
epiworld-methods
Other Models:
ModelDiffNet(),
ModelMeaslesMixing(),
ModelMeaslesMixingRiskQuarantine(),
ModelMeaslesSchool(),
ModelSEIR(),
ModelSEIRCONN(),
ModelSEIRD(),
ModelSEIRDCONN(),
ModelSEIRMixing(),
ModelSEIRMixingQuarantine(),
ModelSIR(),
ModelSIRCONN(),
ModelSIRD(),
ModelSIRDCONN(),
ModelSIRLogit(),
ModelSIRMixing(),
ModelSIS(),
ModelSISD(),
epiworld-data
Examples
model_surv <- ModelSURV(
  name                  = "COVID-19",
  prevalence            = 20,
  efficacy_vax          = 0.6,
  latent_period         = 4,
  infect_period         = 5,
  prob_symptoms         = 0.5,
  prop_vaccinated       = 0.7,
  prop_vax_redux_transm = 0.8,
  prop_vax_redux_infect = 0.95,
  surveillance_prob     = 0.1,
  transmission_rate     = 0.2,
  prob_death            = 0.001,
  prob_noreinfect       = 0.5
)
# Adding a small world population
agents_smallworld(
  model_surv,
  n = 10000,
  k = 5,
  d = FALSE,
  p = .01
)
# Running and printing
run(model_surv, ndays = 100, seed = 1912)
#> _________________________________________________________________________
#> Running the model...
#> ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| done.
model_surv
#> ________________________________________________________________________________
#> Surveillance
#> It features 10000 agents, 1 virus(es), and 1 tool(s).
#> The model has 8 states.
#> The final distribution is: 9975 Susceptible, 0 Latent, 0 Symptomatic, 0 Symptomatic isolated, 0 Asymptomatic, 0 Asymptomatic isolated, 25 Recovered, and 0 Removed.
# Plotting
plot(model_surv, main = "SURV Model")