Susceptible Exposed Infected Removed model (SEIR) with mixing
Source:R/ModelSEIRMixing.R
ModelSEIRMixing.Rd
Susceptible Exposed Infected Removed model (SEIR) with mixing
Arguments
- name
String. Name of the virus
- n
Number of individuals in the population.
- prevalence
Double. Initial proportion of individuals with the virus.
- contact_rate
Numeric scalar. Average number of contacts per step.
- transmission_rate
Numeric scalar between 0 and 1. Probability of transmission.
- incubation_days
Numeric scalar. Average number of days in the incubation period.
- recovery_rate
Numeric scalar between 0 and 1. Probability of recovery.
- contact_matrix
Matrix of contact rates between individuals.
- x
Object of class SIRCONN.
- main
Title of the plot
- ...
Currently ignore.
Value
The
ModelSEIRMixing
function returns a model of class epiworld_model.
The plot
function returns a plot of the SEIRMixing model of class
epiworld_model.
Details
The contact_matrix
is a matrix of contact rates between entities. The
matrix should be of size n x n
, where n
is the number of entities.
This is a row-stochastic matrix, i.e., the sum of each row should be 1.
The initial_states function allows the user to set the initial state of the model. In particular, the user can specify how many of the non-infected agents have been removed at the beginning of the simulation.
See also
epiworld-methods
Other Models:
ModelDiffNet()
,
ModelSEIR()
,
ModelSEIRCONN()
,
ModelSEIRD()
,
ModelSEIRDCONN()
,
ModelSIR()
,
ModelSIRCONN()
,
ModelSIRD()
,
ModelSIRDCONN()
,
ModelSIRLogit()
,
ModelSIRMixing()
,
ModelSIS()
,
ModelSISD()
,
ModelSURV()
,
epiworld-data
Examples
# Start off creating three entities.
# Individuals will be distribured randomly between the three.
e1 <- entity("Population 1", 3e3, as_proportion = FALSE)
e2 <- entity("Population 2", 3e3, as_proportion = FALSE)
e3 <- entity("Population 3", 3e3, as_proportion = FALSE)
# Row-stochastic matrix (rowsums 1)
cmatrix <- c(
c(0.9, 0.05, 0.05),
c(0.1, 0.8, 0.1),
c(0.1, 0.2, 0.7)
) |> matrix(byrow = TRUE, nrow = 3)
N <- 9e3
flu_model <- ModelSEIRMixing(
name = "Flu",
n = N,
prevalence = 1 / N,
contact_rate = 20,
transmission_rate = 0.1,
recovery_rate = 1 / 7,
incubation_days = 7,
contact_matrix = cmatrix
)
# Adding the entities to the model
flu_model |>
add_entity(e1) |>
add_entity(e2) |>
add_entity(e3)
set.seed(331)
run(flu_model, ndays = 100)
#> _________________________________________________________________________
#> Running the model...
#> ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| done.
#> done.
summary(flu_model)
#> ________________________________________________________________________________
#> ________________________________________________________________________________
#> SIMULATION STUDY
#>
#> Name of the model : Susceptible-Exposed-Infected-Removed (SEIR) with Mixing
#> Population size : 9000
#> Agents' data : (none)
#> Number of entities : 3
#> Days (duration) : 100 (of 100)
#> Number of viruses : 1
#> Last run elapsed t : 126.00ms
#> Last run speed : 7.13 million agents x day / second
#> Rewiring : off
#>
#> Global events:
#> - Update infected individuals (runs daily)
#>
#> Virus(es):
#> - Flu
#>
#> Tool(s):
#> (none)
#>
#> Model parameters:
#> - Avg. Incubation days : 7.0000
#> - Contact rate : 20.0000
#> - Prob. Recovery : 0.1429
#> - Prob. Transmission : 0.1000
#>
#> Distribution of the population at time 100:
#> - (0) Susceptible : 8999 -> 137
#> - (1) Exposed : 1 -> 35
#> - (2) Infected : 0 -> 139
#> - (3) Recovered : 0 -> 8689
#>
#> Transition Probabilities:
#> - Susceptible 0.96 0.04 0.00 0.00
#> - Exposed 0.00 0.84 0.16 0.00
#> - Infected 0.00 0.00 0.86 0.14
#> - Recovered 0.00 0.00 0.00 1.00
#>
plot_incidence(flu_model)